GraphScape: A Model for Automated Reasoning
about Visualization Similarity and Sequencing

Younghoon Kim, Kanit Wongsuphasawat, Jessica Hullman, Jeffrey Heer
University of Washington
Seattle, WA, USA
{yhkimO1, kanitw } @cs.washington.edu, {jhullman, jheer} @uw.edu

ABSTRACT

We present GraphScape, a directed graph model of the vi-
sualization design space that supports automated reasoning
about visualization similarity and sequencing. Graph nodes
represent grammar-based chart specifications and edges rep-
resent edits that transform one chart to another. We weight
edges with an estimated cost of the difficulty of interpreting
a target visualization given a source visualization. We con-
tribute (1) a method for deriving transition costs via a partial
ordering of edit operations and the solution of a resulting lin-
ear program, and (2) a global weighting term that rewards
consistency across transition subsequences. In a controlled
experiment, subjects rated visualization sequences covering
a taxonomy of common transition types. In all but one case,
GraphScape’s highest-ranked suggestion aligns with subjects’
top-rated sequences. Finally, we demonstrate applications of
GraphScape to automatically sequence visualization presen-
tations, elaborate transition paths between visualizations, and
recommend design alternatives (e.g., to improve scalability
while minimizing design changes).
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INTRODUCTION

Data visualizations such as statistical charts are often viewed
in sequence. Users of visualization tools may transition among
plots during exploratory analysis [8, 9], view sets of charts
suggested by a recommender [20, 23], or author a presenta-
tion [11, 18] to communicate findings. To fully grasp the
implications of data, visualization viewers must scrutinize not
only individual charts, but also the relationships between them.

Though automated design support for individual charts is a
long-standing topic of visualization research [14, 15, 23], less
attention has been paid to modeling visualization sequences.
In the area of narrative visualization [18], Hullman et al. [11]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CHI 2017, May 6-11, 2017, Denver, CO, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4655-9/17/05 ...$15.00.
http://dx.doi.org/10.1145/3025453.3025866

\ v/ emove \ //
\ . Ilf"ield Color: .

Figure 1. A GraphScape model. Nodes represent Vega-Lite chart specifi-
cations, edges represent edit modifications between charts. Edge weights
encode estimated transition costs between charts.

conduct an initial investigation of automated sequencing. They
envision a graph model in which visualizations are nodes,
edges represent transitions between charts, and graph dis-
tances can encode the “cost” of transitioning from one chart
to another. Such formal models can provide a framework
for reasoning about a visualization design space, including
applications such as automatic sequence recommendation.

Here, we build on this concept to present GraphScape, a di-
rected graph structure and sequence cost function for modeling
relationships among charts. GraphScape supports automated
sequencing, elaboration of paths between visualizations, and
recommendation of visualization design alternatives. We have
implemented GraphScape in terms of Vega-Lite [16], a gram-
mar of graphics capable of expressing a variety of statistical
charts. We offer four primary research contributions:

First, we define a directed graph model of the visualization
design space, in which nodes are Vega-Lite specifications and
edges are edit operations between charts. This model enables
search over a visualization design space via graph traversal.

Second, we introduce a method for estimating transition
costs between visualizations in terms of weighted GraphScape
paths. We generate a principled ranking among edit operations,
and encode these rankings in a linear program whose solution
provides cost estimates for all atomic edit operations.

Third, we formulate a sequence cost function that balances
pairwise transition costs and global sequence analysis. Graph-
Scape’s cost model attempts to minimize edit distances while
also rewarding consistent orderings for grouped subsequences
and filter terms (e.g., to promote chronological order).

Fourth, we present results from two human-subjects exper-
iments. A formative study asks students in a graduate visual-
ization course to author sequences for a set of visualizations.
Subjects’ sequence designs accord with our ranking of edit
operations and reveal the need to promote subsequence con-
sistency in addition to minimizing pairwise transition costs.



The second study asks workers on Amazon’s Mechanical Turk
to rate a set of sequences in terms of how well they convey
the data in a clear and logical manner. We find that subject
preferences strongly correlate with GraphScape’s cost model.

Finally, we demonstrate applications of GraphScape: recom-
mending sequences, elaborating transition paths, and suggest-
ing design alternatives (e.g., given an input chart, find the
“nearest” designs that are scalable to larger data volumes). We
conclude with a discussion of future research directions.

RELATED WORK
GraphScape extends prior work on modeling visualization
state spaces and grammar-based visualization specification.

Modeling Visualization State Spaces

Multiple projects have proposed models of visualization state
spaces, often in order to analyze user exploration. The P-
Set [12] and Image Graph [13] models formally represent a
visualization using a parameter vector, and treat user explo-
ration as a graph structure in which edges correspond to pa-
rameter value changes. To support bookmarking and sharing,
the sense.us [10] collaborative analysis environment similarly
models each state of an interactive visualization as a parameter
set. In these models, the parameter sets may be idiosyncratic
and vary across visualization types. In contrast, GraphScape
provides a generative model for reasoning about a space of
charts expressible within a grammar of graphics.

VisTrails [4, 17] analyzes visualization workflows in order to
track provenance and automatically suggest operations based
on prior activity. Tableau graphical histories [8] record user
activity, representing states as specifications in the VizQL lan-
guage. User explorations form a tree structure in which each
state is a node. This structure can be visualized to aid revisita-
tion or analyze usage patterns. GraphScape similarly models
relationships among visualization states in a graph structure,
but GraphScape edges encode edit operations to transition
from one state to another, not observed user behavior.

Research on animated transitions [9] examines the relationship
between statistical graphics to design animations that convey
semantic changes between charts, including changes to data
transformations and encoding channels. We consider seman-
tics to rank transitions relative to the degree that they modify
a chart’s meaning. As we later demonstrate, GraphScape can
elaborate paths between visualization states, for example to
generate staged animated transition plans.

The most relevant prior work is Hullman et al.’s study of
visualization sequence [11] for narrative visualization. Similar
to GraphScape, Hullman et al. model the visualization state
space as a directed graph, with edges encoding transitions
among charts. GraphScape extends this work in multiple ways.
First, the prior work considers only a subset of transition
types and is conceptual in its treatment. We contribute an
actionable model implemented using the Vega-Lite language,
and demonstrate applications of its use. Second, we contribute
a more sophisticated cost function that balances both local and
global sequence features. We describe a method for deriving
edge weights (to model the difficulty of interpreting a new

chart given a previous chart) and a sequence weighting term
that promotes subsequence consistency. Finally, we present
the results of two experiments investigating how users author
and rate visualization sequences.

Visualization Recommender Systems

Visualization recommender systems also model a space of vi-
sualizations and use an objective function to determine which
charts to show. The Voyager [23], SeeDB [20] and automatic
variable partitioning [2] projects all enumerate a space of pos-
sible plots and rank them according to statistical properties
or perceptual effectiveness measures [5, 14]. GraphScape
similarly provides methods for enumeration and ranking of
visualizations. However, while recommendation systems fo-
cus on suggesting individual charts, GraphScape focuses on
the relationships between charts, for example to sequence
charts or elaborate paths between them. GraphScape is thus
complementary to existing recommender systems: after a rec-
ommender suggests which charts to show, GraphScape can
order the presentation of those charts to facilitate reading.

Grammar-Based Visualization Specification

GraphScape also extends work on grammar-based visualiza-
tion specification. Visualization grammars such as Wilkin-
son’s Grammar of Graphics [22], the Stanford Polaris [19]
system (now commericialized as Tableau), and Wickham’s
ggplot2 [21] can concisely express a range of customized
visualizations and provide a formalism for reasoning about
the visualization design space. However, most treatments of
visualization grammars focus on their use for manual chart
creation. GraphScape provides a means for reasoning about
the design space spanned by these grammars by modeling
the relationships between individual charts in terms of the
specification edits needed to transform one chart into another.

We implemented GraphScape in the context of the Vega-
Lite [16] specification language. First introduced to power the
Voyager [23] system, Vega-Lite is a high-level visualization
grammar, inspired by Tableau’s VizQL, for creating a range
of statistical graphics within a Cartesian coordinate system.
Vega-Lite specifications include data definitions (e.g., to load
data from a URL) and a mark type that determines the form of
geometric mark used (e.g., bars, lines, areas, plotting symbols).
Visual encoding directives map data fields (and associated data
types, such as quantitative or nominal) to visual channels such
as position (x, y), color, shape and size. Encoding channels for
row and column enable the creation of trellis plots, subdividing
a chart into small multiples. In addition, data fields can be
subject to a number of data transformations, including log
scaling, sorting, filtering, binning, and aggregation (e.g., sum,
mean, median, count, efc.). A more complete description of
the Vega-Lite language is available elsewhere [16].

In this paper we focus on the chart specifications described
above. Inclusion of more advanced Vega-Lite features, such
as interactive selections and chart composition operators (e.g.,
layering, concatenation) is left as future work. That said, the
GraphScape model could be applied to order individual plots
within a composite display such as an information dashboard.



COMPARING CHART TRANSITION TYPES

To formulate our model, we began by defining a taxonomy
of specification edits that captures possible transitions among
Vega-Lite unit visualizations. We performed triplet compar-
ison judgments [7] to gauge relationships among edit opera-
tions. This process produced a set of inequalities among edit
operations that induces a ranking of chart transitions in terms
of perceived “cost” or complexity. We then use this ranking to
formulate a linear program, whose solution provides numer-
ical cost estimates for each operation. To test and refine our
ranking, we also conducted a formative experiment in which
we gave students in a graduate visualization course a set of
charts and asked them to sequence the charts in a manner that
communicates the data most effectively.

Step 1: Identifying Edit Operations

Informed by prior studies of visualization transitions [9, 11],
we constructed a taxonomy of possible edits to Vega-Lite [16]
unit specifications. We identified atomic editing operations
that, when combined, can transform any Vega-Lite unit visu-
alization into another. Examples include changing the mark
type (e.g., from bar to line marks), applying a log transform to
an axis, deriving aggregate statistics, and assigning data fields
to visual encoding channels such as position, size, shape and
color. These edit operations form a directed graph in which
visualization specifications are the nodes and the edit opera-
tions are edges defining potential transitions among charts. We
further group these transitions into mutually exclusive cate-
gories of mark type, data transformation, and visual encoding
transitions. Edit operations and categories are listed in Table 1.

Encoding operations such as Add Field, Move Field, etc. per-
mit a large number of combinatorial possibilities relative to the
available encoding channels and data fields. A field may be
added or removed from the x channel, the color channel, and
so on. Filter transformations also take additional parameters,
in the form of filter predicates. Later in the paper we discuss
how our cost model accommodates filter parameters.

Step 2: Ranking Edit Operations

Given a set of edit operations, we next sought to rank these
operations in terms of approximate interpretation difficulty (in
other words, how hard it is to interpret a target visualization
given a source visualization). Our goal was not to derive
precise estimates of user behavior, such as response time or
cognitive load measures, but rather find a suitable ordering of
edit operations to support ranking of visualization sequences.

Due to the large combinatorial space, manually ranking all
pairs of edit operations is infeasible (even ignoring issues such
as the choice of data set or visual context). To prune the
space, we leverage assumptions about transition categories:
we assume that mark type transitions are less costly than data
transformation transitions, which in turn are less costly than
visual encoding transitions. Our rationale stems from the se-
mantics of each transition type: changing the mark type holds
all data constant, data transformations retain the same backing
data fields but can change the level of summarization or the
set of data points visualized, and visual encoding transitions
fundamentally change what data fields are being shown. Each
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Figure 2. 2D embedding of mark type comparisons. The distance be-
tween mark types indicates the estimated transition cost between them.
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Figure 3. 2D embedding of encoding channel comparisons. Distance
indicates the estimated cost of Move Field operations between channels.

involves more substantial modifications to what the visualiza-
tion conveys, presumably entailing more interpretative effort.

We then investigated how to rank order edit operations within
each transition category. Following the perceptual kernels
method of Demiralp et al. [7], we formulated a set of triplet
comparisons: given a source visualization and two target visu-
alizations, which target visualization is easier to interpret in the
context of the source? For example, given a bar chart, which
is easier to understand: an area chart of the same data or a line
chart? We conducted self-experiments to collect triplet judg-
ments involving edit operations within each transition category.
We then used Generalized Non-Metric Multidimensional Scal-
ing (GNMDS) [1] to produce metric-space embeddings.

Mark Types. Figure 2 shows an embedding of mark type
comparisons. The embedding exhibits symmetries for discrete
(point, tick, bar) vs. continuous (line, area) marks as well
as filled shapes (bar, area) vs. point embeddings (point, tick,
line). Text marks are distinctly placed, with point and tick
marks as nearest neighbors.

Data Transformations. We constructed a similar embedding
for data transformations, finding that axis scaling (e.g., log
scale) led to the smallest distances, followed by sorting. These
transforms distort or rearrange a chart without changing the
data. Meanwhile, bin and aggregation transformations lie
along a 1D spectrum in the embedding, ranging from raw data,
to binned data (e.g., histograms), to point aggregates such as
means and medians. We judged filter operations to be the most
costly, as they modify which data is included in a chart.

Visual Encodings. Figure 3 shows an embedding of encoding
channels for Move Field operations, which move a data field
from one encoding channel to another. Spatial channels (x,
y position; subdivision by row or column) exhibit expected
symmetries. The color, shape, size, and text channels form
a cluster exhibiting smaller distances among each other. For
all other encoding operations (Add Field, etc.) the underlying
inequalities are x,y > row, column > color > size > shape >
text. This ranking assumes that changes to spatial encodings
require more interpretation effort, or, conversely, that it is
easier to interpret a sequence of charts with a stable set of
axes. The row and column channels are considered cheaper



Category Edit Operations Description Example
Mark Marks_Markp Change the mark type from A to B, or vice versa. ~ Change Bar marks to Line marks.
Scale Add, change or remove an axis scale transform. Apply a log scale on the x-axis.
Sort Change the sort order of a visualized data field. Sort ‘Maker’ on x-axis in descend-
Transform . ¢ .
ing order of ‘Mean Price’.
Bin Discretize values of a visualized field into bins. Bin ‘Price’ into 10-unit-wide bins.
Aggregate Aggregate values according to an aggregation Aggregate ‘Price’ to mean.
function such as sum, mean or median.
Modify Filter, Filter data records according to a filter predicate  Filter ‘Price’ values < 100.0. Keep
Add / Remove Filter ~ function. ‘Maker’ values equal to ‘Company
A’ or ‘Company B’.
Transpose Swaps the (x, y) or (row, column) channels. Transpose the x- and y-axes.

Encoding  Move

Move a field on one channel to another channel.

Move ‘Price’ from x-axis to y-axis.

Add / Remove Add or remove a field from an encoding channel.  Add ‘Price’ to x-axis. Remove
‘Price’ from x-axis.
Modify Replace a field in a channel with another field. Replace ‘Price’ with ‘Maker’ on

the x-axis.

Table 1. Edit operations for transitions among visualization specifications. The table is sorted in ascending order of estimated pairwise cost.

than x and y to favor consistent sub-plot structure in the face
of changing trellis subdivisions, rather than vice-versa. Our
model does not permit assignment to row or column channels
if the corresponding x or y channel is unassigned. This scheme
ensures that simple plots take precedence over trellis plots and
does not incur any significant expressivity limits, as assigning
to row or column with no corresponding x or y assignment is
nearly equivalent to assigning a discrete field to x or y directly.

Comparing encoding operations, our triplet judgments produce
the ranking Transpose > Move > Add, Remove > Replace.
Transpose was deemed least costly, as it swaps spatial posi-
tions only. Move similarly preserves the set of data fields being
visualized, though can involve changes of encoding channel.
Add and Remove are treated as equally costly. Finally, Replace
operations both add and remove a data field in one operation,
and are thus more complex than a single add or remove. When
comparing two operations of the same type (e.g., two adds),
we apply the encoding channel rankings described above.

Step 3: Deriving Edit Operation Costs

Our triplet judgments and resulting embeddings provide rea-
sonable initial models of difference within transition cate-
gories, but forming a general cost model presents multiple
challenges. First, how should the results for different cate-
gories be combined? How should distances among mark types
be scaled relative to distances among data transformations?
Second, metric embeddings do not preserve additive distances.
Within a 2D embedding the distance of applying Edit4 fol-
lowed by Editp is measured as the (L2) Euclidean distance
in the embedding space, not the (L1) sum of distances. An
embedding-based cost model might thus “cut corners” in unde-
sirable ways. Third, by construction metric embeddings gen-
erate symmetric distances. However, we would like a model
that is capable of expressing asymmetric transition costs, as it
may be the case that T (a,b) # T (b,a).

These issues led us to consider alternative analyses of the
triplet judgments. Each judgment expresses an inequality
among two edit operations (e.g., Sort < Add Filter). We can
encode these inequalities in a single linear programming [6]
problem. The solution to this linear program is a set of cost
estimates for all edit operations. This solution also preserves
additive (L.1) distances and permits asymmetric costs.

Recall that linear programming solves for a vector x given
problems of the form: minimize f’x, subject to Ax < b and
x >0, where f is a given vector of coefficients, and matrix A
and vector b encode linear inequalities.

Consider an example with two edit operations add and rem.
Assume all edits have positive, non-zero cost and add <
rem. We can encode this as the linear program —add <
—1; —rem < —1; add — rem < —1. Or, in matrix form:

—1 0 —1 |
[ e (3]
1 -1 —1
The —1 terms in the b vector enforce a minimum cost of 1,
while f specifies that the solution should minimize the sum of

all costs relative to the inequality constraints. The solution for
x consists of the cost estimates for add and rem.

We use this encoding approach to learn costs for GraphScape,
using the edit operations and inequalities described above.
We augment these judgments with additional inequalities that
encode our category rankings (mark type < data transforma-
tion < encoding operations). We require that the sum of all
costs in one category (e.g., mark type) be less than the cost
of any single operation in a more costly category (e.g., data
transformation). Our complete set of inequalities and code for
generating linear programs (solvable via MATLAB’s linprog
function) are included as supplemental material.



EMPIRICAL STUDY OF EDIT OPERATION RANKINGS

Our initial modeling efforts produced a set inequalities among
edit operations, gathered via self-experimentation. To further
test and refine our model, we conducted a controlled experi-
ment in which 51 students (19 female, 31 male, 1 declined to
state) in a graduate visualization course manually sequenced
sets of charts. We asked subjects to order the charts in a man-
ner that most clearly and effectively communicated the data.
Subjects were compensated with extra course credit.

Each subject sequenced a total of seven chart sets: four in-
cluded a fixed initial chart to force subjects to decide between
two difficult options; the other three permitted arbitrary place-
ment of all charts. Each set was constructed to test specific
modeling questions, as described below. All chart sets are
included in supplemental material. To assess statistical sig-
nificance, we used chi-squared tests of categorized counts of
subject responses. Where subject responses involved only
two possible choices, we also ran binomial tests; these provide
identical significance results and are not reported here. Results
of a post-hoc power analysis that confirms sufficient power for
detecting differences between frequencies of sequence types
are included in supplemental material.

1. Add vs. Remove Fields. This set contains three charts of
college admissions data: the first (fixed) chart shows total num-
bers or accepts and rejects by gender, the others (1) subdivide
the plot into columns by department and (2) remove gender
as a color-encoded field. There are two possible sequences:
a sequence that adds one field and then removes two fields,
or a sequence that removes one field and then adds two. Is
the cost of adding a field different than the cost of removing a
field? Subject preferences are split between multiple removes
(28/51) and multiple adds (23/51), x%(1) = 0.4902, p = 0.484.
As a result, our model treats add and remove field operations
within an encoding channel as having equivalent cost.

2. Mark Type vs. Scale Transform. This set contains three
stock charts: a first (fixed) line chart, an otherwise identical
scatter plot (with mark type point), and a log-scaled line chart.
Here, we sought to compare mark type changes and data trans-
formations: one possible sequence involves two mark type
changes and one log scale transform, while the other instead
involves two scale changes and one mark type change. Here,
subjects roundly preferred two mark type changes (44/51) over
two scale changes (7/51), x2(1) = 26.84, p < 0.001. This re-
sult provides corroborating evidence for ranking mark type
changes as less costly than data transformations.

3. Filter vs. Transpose. This set contains three charts with
data about automobiles. The first (fixed) scatter plot depicts
acceleration vs. displacement for a set of European, Japanese
and American cars. The other charts (1) transpose the first plot
and (2) filter the first plot to show only European cars. Here
our goal was to compare the perceived cost of filtering a view
(a data transformation) to transposing a view (a minimally
disruptive encoding change). Subjects preferred the sequence
with two filter modifications (37/51) over the sequence with
two transpositions (14/51), 752(1) =10.37, p = 0.001. This
result supports our decision to consider data transformation
transitions less costly than encoding transitions.

4. Add vs. Remove Filter. This set contains three charts
showing unemployment data across industries. The first (fixed)
scatter plot shows unemployment data for three industries over
the period 2005-2010. The other charts (1) filter to show man-
ufacturing only or (2) expand the time period to 2000-2010.
This example tests whether users exhibit preferences regarding
adding vs. removing filters. We found no significant prefer-
ence across the two possible sequences (28/51 vs. 23/51),
xz(l) =0.4902, p = 0.484. As a result, our model does not
include asymmetric costs for adding or removing filter terms.

5. Roll-Up vs. Drill-Down. This set contains four charts
showing IMDB ratings for movies from the years 1940-2010.
One chart plots all films, while others show average rating by
year or by decade. A final chart additionally filters to show av-
erage ratings by year within the “Horror” genre. We designed
this trial to assess subject preferences for specific-to-general
(e.g., “roll-up”) or general-to-specific (e.g., “drill-down”) tran-
sitions. We found a preference for starting from the entire data
and introducing increasing levels of summarization (26/51),
as opposed to drilling-down (11/51) or alternating between
levels of abstraction (14/51), x2(2) =7.412, p =0.025. In
the case of alternating levels, we saw examples where subjects
start by showing the raw data, then jump to the highest level
of summarization and drill-down. The results exhibit a fair de-
gree of individual variation, and different presentations might
benefit from different narrative strategies. Still, the results
support a default strategy of starting from instance-level data
and building up to aggregate displays.

6. Edit Minimization. This set consists of four charts show-
ing US population data by gender and age in both 1860 and
2000. The set includes a stacked bar chart and three trel-
lis plots; two charts have the y-axis for age increasing from
top-to-bottom and two have it increasing from bottom-to-top.
Our goal here was to test if users would prefer sequences
that minimize the number of edits across each frame. One
possible sequence changes only one aspect at a time, oth-
ers require multiple changes (combining a visual encoding,
axis direction, and/or filter changes). A strict analysis finds a
marginally significant preference for minimizing edits (32/51),
x*(1) = 3.314, p = 0.069. If the analysis is relaxed to ig-
nore changes in axis direction, the result strengthens (44/51),
2*(1) =26.84, p < 0.001. Our interpretation is that subjects
prefer to reduce the number of edits at each step, but are less
concerned with a change in axis direction. This result sup-
ports our strategy of limiting pairwise transition costs. Subject
responses additionally show a strong preference for chrono-
logically ordered charts (42/51), xz(l) =21.35, p < 0.001.

7. Subsequence Parallelism. This set contains six scatter
plots of horsepower vs. weight for a data set of cars. The plots
alternate between showing data for all cars in the database,
only European cars, and only American cars. Three plots show
data from 1976, while three show data from 1980. This trial
was intended to test whether subjects strictly minimize pair-
wise transition costs or favor consistent parallel subsequences.
For example, subjects might consistenly order charts filtered
by region within each year (parallelism) or could use alternate
orderings that minimize the total number of edits (see Figure 4



for an example). We observe a clear preference for parallel
structure as opposed to aggressively minimizing pairwise tran-
sition costs (36/51), xz(l) = 8.647, p =0.003. In agreement
with prior work [11], these results suggest that using consistent
transitions within groups of related views (parallel structure)
may be preferred to organize a sequence, involving analysis
of sequence structure beyond pairwise relations alone.

The experimental results align with our modeling choices or,
in cases where no significant differences are found, suggest
that our ranking resides well within inter-subject variation. In
addition, task 7 reveals a critical requirement for sequence
cost models: preserving parallel structure may be preferable to
minimizing the edit distance at each step of a sequence. Naive
minimization of pairwise costs may thus overfit. In the next
section, we present our full sequence model, which includes
both pairwise transition costs and a global sequence weighting
term that rewards consistency among subsequences.

Of course, our study has limitations. We did not exhaustively
test all edit combinations. Instead, we created visualization
stimuli to represent a set of specific combinations where we
suspected systematic preferences might exist, but where we
were uncertain about the ranking.

THE GRAPHSCAPE MODEL

GraphScape consists of a directed graph that models the visu-
alization design space in terms of editing operations between
chart specifications, and a sequence cost function that assigns
a numerical score to an ordered set of chart specifications.

Directed Graph of Visualization Specifications

We formally define a GraphScape = (V,E,D) as a directed
graph of visualizations, where nodes v € V are Vega-Lite unit
chart specifications [16] and edges e € E are edit operations
that turn one specification into another (illustrated in Figure 1).
The possible edit operation types are listed in Table 1.

A GraphScape is defined relative to a relational data table D.
For any node v, incident edges are determined by the data set
and the encoding channels used in v. For example, only data
fields f € D can be added to a visualization, Remove Fieldy .
can not be performed if the x encoding channel is empty, and
Add Fieldy,, can not be performed if a field is already present
on the y channel. Given all possible combinations of data
fields, edit operations, and encoding channels, each node v
may have many incident edges. As a result, we typically do not
materialize a full GraphScape model, but rather dynamically
enumerate valid edges when traversing the model.

Transition Costs

Each GraphScape edge includes an edit cost w(e), as deter-
mined by our linear program. We simply lookup an edge’s
edit operation type and return the corresponding cost estimate.
More generally, we define the transition cost T'(u,v) between
visualizations u and v as the sum of edge weights along the
shortest (lowest weight) path between them:

T(M,V) = Z‘e€.S'h()rtestPath(u,v,w) W(e)

We alter this formula slightly in the case of encoding op-
erations involving the count aggregation function, which is

extremely common as part of summary plots (e.g., for cat-
egories and histograms). We discount the cost by ignoring
the contribution of co-occurring Bin or Aggregate edits. For
example, Add Fieldoyn x incurs only the cost of an Add Field
operation, ignoring the Aggregate data transformation cost.

Filter Sequence Costs

Filter operations are expressed as a conjunction of predicates.
The supported predicates are equality, range, and set inclusion
tests. For example, the filter range(Price, [100,200]) includes
a data point if the ‘Price’ field value lies in the range 100-200.
As they are data-dependent, predicate terms are not accounted
for by our linear program, and sequences with different filter
operations may incur identical transition costs.

To account for different orders of filter operations, our cost
model analyzes filter modification sequences. We focus on
equality predicates, which are common during visual analysis
(e.g., to view data for individual years or category values).
Whereas trellis plots (row or column channels) subdivide data
over space, sequential filtered views subdivide data over time.
We leave range and set inclusion predicates for future work.

We compare data values within equality predicates and reward
sequences with values in sorted order. We favor ascending over
descending order, which promotes alphabetic (for categorical
data) and chronological order (for dates). We first identify all
recurring filtered fields within an input sequence S, and extract
a set V consisting of per-field sequences of predicate values v;.
Our filter cost term F is given by:

F(S)=1— 1 Z |Zlizd(vi—1,vi)+0.l|
VIS  -1+0.1

d(vaavb) — “;a:zz‘ ifVa * Vp, 0 otherwise
a

For each filtered field we score ascending and descending
value changes as +1 and -1, respectively. We compute the ab-
solute value of the sum of scores for each field, normalized by
the number of filter changes. We include an additional 0.1 to
bias the score in favor of ascending order. A sorted ascending
order will receive the highest possible score, and a sorted de-
scending order will receive a slightly lower score. Orders with
both ascending and descending changes will cancel each other
out, leading to low scores. We then take the average of all filter
scores, and subtract it from one to convert the score to a cost.
The result provides a fractional offset for the total sequence
transition cost. This calculation is illustrated in Figure 4.

Global Weighting: Rewarding Consistent Subsequences
Both prior work [11] and our formative experiment find that
people prefer chart sequences that are grouped and sorted in a
consistent order, even if this does not perfectly minimize the
edit distance. Accordingly, our cost model includes a global
weighting term W to reward sequences that order charts into
consistent, parallel subsequences.

We define a pattern P as a repeated, non-overlapping subse-
quence of identical transitions. The global weighting term W
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is then determined by the fraction of the sequence S covered
by the pattern P that induces maximal coverage over S:

count(P,S) - |P|

W(S) =1 —max 5]

For example, in Figure 4(c), P contains two transitions (|P| =
2) that add and then modify a filter. This pattern occurs twice
(count (P,S) = 2) within a sequence of length |S| = 6.! The
global weighting term is thus W(S) =1-2-2/6 =1/3.

The W (S) term reduces the final sequence cost by a multiplica-
tive factor that reflects the number of consistent subsequence
transitions. If no repeating pattern P exists, we set W = 1 and
the sequence cost is unchanged.

The GraphScape Sequence Cost Function
Bringing each component together, the GraphScape cost func-
tion for a visualization sequence S is:

S|
Cost(S) =W(S)- [ F(S)+ Y. T(Si-1,S:)
i=1

To account for the cost of interpreting an initial chart within a
sequence, we treat each input sequence S as having an initial
entry So consisting of a null specification in which no encoding
fields are specified. Adding this entry ensures that transition
costs for building up the initial chart are included in the cost
calculation. This step also biases the cost function in favor
of specific-to-general transitions that start with unaggregated

The normalizing term |S| (as opposed to |S| — 1) accounts for the
initial null specification transition described in the next sub-section.

data and build up to summary visualizations, a preference
observed in our formative study.

EVALUATION: SEQUENCE RATINGS

We conducted an experiment to measure how the GraphScape
cost model aligns with user preferences for chart sequences.
In each trial, subjects viewed five different sequences of six
charts and rated how well each sequence presented the data in a
clear and logical manner using a 5-point Likert scale. Each set
included the top-scoring sequence according to GraphScape,
along with others chosen to cover a set of ordering strate-
gies. We hypothesized that, by balancing both local transition
costs and subsequence consistency, GraphScape’s sequence
rankings would strongly correlate with subjects’ ratings.

Experimental Design

Participants. We recruited 55 participants (29 female, 26
male) on Amazon’s Mechanical Turk, each located in the U.S.
and with a HIT approval rate > 95%. Each received $6.50
USD in compensation. Among the participants, 6 (11%) re-
ported having a graduate or professional degree, 28 (51%) a
bachelors or associate degree, 15 (27%) some college course-
work, and 6 (11%) a high school diploma. No subjects re-
ported vision impairments. Participants took an average of 41
minutes (s.d. 19 minutes) to complete the study.

Stimuli. Subjects performed 6 trials. In each trial, subjects
were shown a set of 6 charts and 5 possible sequences of
those charts. We designed the sets to cover the transition
styles proposed by Hullman et al. [11] and observed in our
formative experiment. These styles include measure walks
(viewing different quantitative measures against a fixed set
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Figure 5. Interface for the sequence rating experiment. Subjects rated how well each sequence presents the data in a clear and logical manner. Sequences
were randomly assigned to table rows. Here, sequence B receives the highest rankings from both subjects and the GraphScape cost model.

of categories), dimension walks (viewing one or more fixed
measures against a rotating set of categorical fields), filter
walk (changes of filter values), consistent subsequence orders
(parallelism), chronological ordering, and coverage of mark,
transform, and encoding operations. To ensure a viable range
of feasible sequences, we applied more than one style in each
set. For example, the sequences in Figure 5 cover encoding
and transform transitions, and include parallelism.

In each set, one (and only one) sequence was the highest
ranked sequence by GraphScape. Another sequence was gener-
ated by random permutation. The rest were manually designed
to provide meaningful, non-random sequences distinct from
the others. These hand-crafted stimuli included sequences
respecting parallel structure and ordered filter terms.

Procedure. For each set, participants first viewed all 6 charts
and answered three multiple choice questions. We used these
questions to screen responses where participants did not ad-
equately read the charts. We then prompted participants to
think about how they would sequence the charts to best com-
municate the data. Once ready, subjects clicked a confirmation
button and were presented with the 5 stimuli sequences, ran-
domly placed in 5 rows (Figure 5). Upon mouse hover, the
interface showed magnified views of a chart and its immediate
sequence neighbors. We asked subjects to rate each sequence
according to how well it presents the data in a clear and logical
manner. Subjects responded using a 5-point Likert scale rang-
ing from “Very Poor” to “Very Good”. After a trial, subjects

were asked to describe what features motivated their ratings.
Finally, subjects completed a short demographic survey.

Results

We analyzed a total of 1,535 ratings, omitting 115 responses
where participants incorrectly answered one or more screening
questions. Figure 6 shows 95% confidence intervals of mean
ratings for each sequence. To compare sequences across all
task sets, we first analyzed the data using a linear mixed-
effects model. We then analyzed task-level responses using
non-parametric tests. Finally, we analyzed the rank correlation
among subject ratings and variants of the GraphScape cost
model. All results —including experimental data, analysis
scripts, and post-hoc power analysis used to confirm sufficient
power — are included as supplemental material.

GraphScape recommendations receive higher ratings. We
first fit a linear mixed-effects model to assess if GraphScape
sequences led to higher ratings across tasks. The model terms
were a graphscape factor indicating if a sequence was the
highest ranked by GraphScape within its set, and the inte-
ger position of the row containing the sequence in the UI to
control for presentation order. We included random effects
for both subject and task, using a maximal random effects
structure [3] with random intercepts, slopes for position, and
covariances between the two. The graphscape coefficient was
0.46 (95% CI: [0.32, 0.61]), indicating a half-point boost for
GraphScape’s top-rated sequences. This result is statistically
significant according to a likelihood ratio test (x2(1) = 39.87,
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p < 0.001). The position term did not exhibit a significant
effect on subject ratings (x2(1) = 0.8801, p = 0.348).

For all but one task, the top GraphScape sequence is
among the highest rated. To analyze data at the per-task
level, we performed non-parametric Friedman tests for each
set. All tests were significant except for set 4. For all other
sets we then performed post-hoc pairwise comparisons of se-
quence ratings using paired Wilcoxon rank-sum tests, with
Holm correction to account for multiple comparisons. Graph-
Scape sequences received the highest average rating for sets
1,4, 5 & 6, and the second highest for set 2. Both statistical
tests and 95% confidence intervals (Figure 6) indicate statis-
tical “ties” among the top-scoring sequences, for which no
significant differences were found. For all tasks except set 3,
GraphScape lies in the top-scoring group.

In task 3, GraphScape’s top choice (sequence 1) received neu-
tral ratings. It fared significantly worse than sequences 2 & 3
(p < 0.01), but better than sequence 5 (p < 0.01). To under-
stand why GraphScape did not perform as well, we turned to
subjects’ rationales. Set 3 consists of charts about automobiles,
including the year of manufacture and the region of origin.
Most subjects (37/55) referenced chronological ordering as
a primary motivation. The top-ranked sequences primarily
organize the charts by year, then by category. GraphScape
instead prioritizes filtering by origin and then secondarily fil-
tering by year. Each provides a reasonable order, depending
on whether one wishes to compare regions within years, or
compare years within regions. We also note that among the

charts in set 3, sequences 2 and 3 were the next highest rated
by GraphScape, with cost estimates only slightly higher than
sequence 1. An interface showing multiple GraphScape rec-
ommendations would thus list each of these options.

GraphScape and subject rankings correlate strongly. The
analyses above compare only the sequence with the lowest
GraphScape cost to all others. To compare subject’s overall
rankings to GraphScape rankings, we computed Spearman
rank correlation coefficients among subject rankings, Graph-
Scape rankings, and GraphScape rankings calculated using
only transition costs or only global sequence weighting. We
observe that GraphScape and user rankings have a strong, sig-
nificant correlation with each other (p = 0.8, p < 0.001). A
cost model using only the global sequence weighting term
results in a weaker correlation with user rankings (p = 0.6,
p < 0.001). Using only local transition costs leads to weak,
insignificant correlations with user rankings (p = 0.35, n.s.).
In addition, the cost models using only transition cost and only
global weighting are largely uncorrelated (p = —0.10, n.s.),
indicating that each makes an independent contribution to the
full GraphScape cost model. These results validate Graph-
Scape’s rankings and the importance of considering both local
transition costs and subsequence consistency.

Overall, the GraphScape cost model largely matched subject
preferences. GraphScape recommendations led to higher rat-
ings on average and were among the highest-ranked sequences
for all but one task set. We observed a discrepancy in terms
of chronological order, where subjects’ top-ranked sequence
scores highly — but not highest — according to GraphScape.

GRAPHSCAPE APPLICATIONS

The GraphScape model is both a generative tool (e.g., given
one or more starting points, one can traverse the graph to
enumerate related charts) and an evaluative tool (e.g., to mea-
sure costs among multiple charts). To illustrate the utility of
GraphScape, we present a trio of applications that recommend
visualization sequences, elaborate transition paths between
visualizations (e.g., for designing animated transitions), and
recommend design alternatives given an initial design.

Sequence Recommendation

A motivating application of GraphScape is to automatically
sequence a set of charts. Sequencing is valuable for improving
interpretability in narrative visualization (e.g., when a user cre-
ates a presentation of charts bookmarked during exploratory
analysis) and visualization recommendation (e.g., given a set
of recommended charts, how might they best be ordered?).
The GraphScape cost model provides an objective function for
determining optimized sequences. In the case of a small input
set, we can simply enumerate all possibilities and score them.
To efficiently recommend longer sequences, the GraphScape
cost function can be used within an optimization method. For
basic narrative use cases, including measure walks and dimen-
sion walks [11], we envision automated ordering integrated
with manual review and fine-tuning by end users. Tools could
present multiple high-scoring sequences (or even apply dif-
ferent GraphScape variants based on alternative rankings or
weighting terms) to suggest additional options.
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Path Elaboration

Another application is elaborating transition paths (lowest-cost
edit sequences) between two visualizations. Path finding can
be performed via traversal of GraphScape’s directed graph
model. As there may be multiple graph paths representing
different orders of edits, GraphScape transition costs can be
used to determine a shortest path using standard techniques
such as Dijkstra’s algorithm. One use case for path elaboration
is the automatic design of animated transitions. A shortest-
path traversal can be used to enumerate “key frames” for
staged animations, where each frame is an intermediate chart
along the shortest path. That said, prior work [9] suggests that
aggressive staging is not always ideal. One area for future
work is to investigate how GraphScape cost estimates might
aid identification of path “cut points” at which to break up an
animation into stages to mitigate the increasing interpretation
costs of long, complex transitions.

Design Alternatives

Given an initial design, GraphScape can be used to search
for alternative designs that meet some desired criteria. One
compelling example is creating scalable visualizations. A ba-
sic scatter plot is effective with a limited number of records,
but suffers from overplotting as data volume increases. We
may consider a chart scalable if the number of rendered marks
is below some threshold (say 5,000), and use this criteria to
search for scalable visualizations that preserve design features
of a (non-scalable) input chart. Figure 7 illustrates this ap-
proach: given a basic scatter plot specification as input, the
GraphScape model can be used to find scalable specifications
ranked by edit distance from the input. Here, we perform a
constrained graph traversal that preserves the field assignments
to the x and y channels. The search results include addition of
a filter transform to visualize a sub-sample and use of binned
aggregation (adding two bin transforms and assigning count
to the size channel) to form a 2D histogram. Here, scalability
constraints and edit distance together determine the results. Fu-
ture work could directly incorporate additional ranking terms
(e.g., perceptual effectiveness scores or statistical measures of
the underlying data).

CONCLUSION & FUTURE WORK

We presented GraphScape, a directed graph model of the vi-
sualization design space and a corresponding cost function
for ranking visualization sequences. We contribute both a
transition cost model determined by a ranking of edit op-
erations, and additional cost terms that leverage sequence
analysis to promote consistent subsequences and sorted fil-
ter values. We also presented the results of two controlled
experiments that inform and validate our model, and demon-
strated applications of GraphScape that enable new features
for visualization tools. Our GraphScape implementation,
including cost model generation code and an automatic se-
quencing tool, are available as open source software at https:
//github.com/uwdata/graphscape.

The version of GraphScape presented here can support higher-
level reasoning about visualization designs. Still, a great deal
of future work remains. First, our modeling assumptions
and cost function terms should be further studied and refined.
GraphScape covers a reasonable portion of the design space
spanned by Vega-Lite, but could be extended to more nuanced
specifications. For example, GraphScape’s cost model does
not differentiate between log and square root axis scale trans-
formations, and does not yet handle filter predicates beyond
basic equality comparisons. Further study might also yield
improvements to our cost function, for example by learning
optimized weights for each cost function component, trained
on a corpus of user sequencing decisions.

In this work we adopted the simple and convenient model of
flat, linear sequences. While we include terms to promote
consistent subsequences, future research might directly model
more complex organizations. For example, one might for-
mulate cost models for tree or graph structures capable of
representing non-linear narratives [18]. In addition, the cur-
rent work focuses its analysis at the level of visualization
specifications, but does not include analysis of the data it-
self. Should some otherwise-identical transitions (e.g., adding
field A vs. field B) receive different cost estimates based on
statistical relationships among the data fields?

Our experimental studies focused on sequence authoring tasks
performed by knowledgeable visualization students and se-
quence rating tasks performed by a more general audience
recruited on Mechanical Turk. Future experiments might in-
clude task-based performance measures. For example, how
do different sequence choices affect subsequent decision mak-
ing or information recall? While more complicated to design,
such studies could provide additional design guidance, and
may identify cases where subject performance and preferences
do not align. In addition, the “correct” sequence for a given
situation may vary with context, such as the data set, intended
audience, and presenter goals. Continued research is needed
to cultivate a more nuanced understanding.
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